
RCP Database Interactions

Version 0.4

Marc Paterno
CD Special Assignments, FNAL

August 14, 2000

Abstract

This document presents the database interface of the RCP system.
The interface is used by all RCP database implementations.

1 Recent Modifications

This is the first version of the most recent release, RCP 0.4. The major new
feature in this release is the addition of untracked (also called transient) param-
eters. See section 7 for details.

2 Introduction and Terminology

This document specifies the interactions of the RCP system with all RCP
database implementations. In the following, we carefully distinguish between
RCPs (instances of the class RCP); RCPValues (instances of the class RCPVal-
ue), RCP scripts (text files used to describe an RCP) and RCP database entries
(the representations of RCP objects in a specific physical database).

2.1 Glossary

The following list of terms is presented to help clarify terminology.

Parameter set The collection of name/value pairs in an RCPValueobject.

RCPName A class; it includes a set of four strings (package name, object
name, version tag, and database name), used to uniquely identify a pa-
rameter set.

RCPID A class; it provides a unique (within a single database piece) identifier
for a parameter set.

RCPValue A class; it contains a parameter set, an RCPID, and an RCPName.

1



RCP A class; it is an RCPValue object, wrapped in a read-only shell. This is
form in which parameter sets are presented to users.

RCPHashKey A class; it represents a not-quite-unique identifier, calculated
by an RCPValue, from the contents of its parameter set. Untracked (tran-
sient) entries are not included in the generation of an RCPHashKey.

Database piece A group of tables in a database, which contain related RCP-
Valueobjects. Different database pieces may or may not reside in different
physical databases.

Concrete database object An instance of a subclass of AbsRCPDatabase.
Each concrete database object is the C++ representation of a single
database piece.

3 RCP Classes Relevant to the Databases

The database interactions of the RCP package are encapsulated in a single ab-
stract base class, AbsRCPDatabase, from which concrete RCP database classes
are derived by subclassing. These subclasses are used, through the AbsRCP-
Database interface, by the class RCPDatabaseServices. The RCP database ob-
jects will be constructed by a factory on behalf of the RCPManager, which is
responsible for managing all interactions with the physical database represented,
within a program, by an RCP database object. Users of the RCP system do not
interact directly with the database; they interact only with the class RCPMan-
ager. The purpose of the RCPDatabaseServices class is to provide the database
services needed by the RCPManager, through a simple interface. It exists to
factor out the “business rules” shared by all RCP databases. The interface class
AbsRCPDatabase expresses the functionality required by each database back-
end. The things manipulated by the AbsRCPDatabase interface are RCPValue
objects. An RCPValue object contains the data for a single RCP object and an
interface to query and modify the contained data. Each RCP database entry
is associated with a unique identifier, in the form of an instance of the class
RCPID. Each distinct database piece is associated with a unique (across the
entire experiment) database identifier, which is also contained in the RCPID.
We note that a copy of a database piece is not distinct from the master from
which it was made because the copy can be used only in read-only mode. Write
access is available only for the master version. An RCPHashKey represents the
“hash value” associated with an RCPValue object. This value will be used as a
non-unique (but as close to unique as can reasonably be achieved) key to find
RCP database entries. The RCPHashKey associated with an RCPValue can be
calculated from the RCPValue object alone, using only the (name, value) pairs
it contains, neglecting any untracked parameters. RCPHashKey is currently a
typdef for unsigned long – a 32-bit cyclic redundancy check.

2



4 C++ Representation of Database Pieces

In the RCP system, the representation of a database piece is an instance of a
subclass of AbsRCPDatabase – a concrete RCP database object. It is critical
to the functioning of the RCP system that the correct association be made be-
tween each concrete RCP database object and the physical database, or portion
thereof, it represents. It is simplest to explain the requirements through an
example. Consider a single Oracle database containing all the RCP database
entries for the experiment. The tables in this database are organized into groups.

• One group of tables for officially released RCPs - named “official”.

• Two groups of tables, one for the Higgs physics group and one for the
QCD physics group - named “higgs” and “qcd”

• Two groups of tables, one for each of two users, Jack and Jill - named
“jack” and “jill”.

Each of these groups of tables is a database piece. Each database piece has an
associated name (a string), and an associated RCPDatabaseID. Some master
database is responsible for keeping track of all names and RCPDatabaseIDs for
database pieces, because these must be unique across the experiment. In any
program, we want to make sure that we have only one programmatic represen-
tation of each database piece. So, when we create an instance of OracleRCP-
Database (a subclass of AbsRCPDatabase), we want to connect it with a specific
database piece, which we specify by giving the name of the database piece to
the constructor, as follows:

bool writable = true;
std::string version ("SomeReleaseTagHere");
OracleRCPDatabase jacksDB("jack", writable, version);

The RCP system will make use of this constructor to assure that all RCPMan-
agers in a single program that want to talk to a specific database piece do so
through the same concrete database object, and that this database object is
configured correctly.

5 Responsibilities of RCPDatabaseServices and
AbsRCPDatabase

The RCPDatabaseServices class exists to provide a common implementation of
the functions related specifically to the behavior required of the RCP system.
The AbsRCPDatabase classe, and its concrete subclasses, are to perform only
the database-specific (including the client/server nature) parts of this behavior.
To be more specific:

3



• RCPDatabaseServices provides caching of RCPValue objects that are ex-
tracted from the AbsRCPDatabase object. A concrete database class does
not have to implement this caching.

• When an RCPManager requests an RCPValue that matches the contents
of a given RCPValue (by supplying a complete RCPName and a valid
RCPID), it is the RCPDatabaseServices class that determines which of
the possible matches, if any, is the correct one. The AbsRCPDatabase
class is responsible only for (1) telling how many parameter sets match
a given hash key, and (2) returning all the parameter sets matching that
has key.

• A concrete subclass (or subclasses) of AbsRCPDatabase is responsible for
providing the client/server nature of the database connection. An RCP-
DatabaseServices object talks only to an instance of a subclass of Abs-
RCPDatabase which exists in the same process. The details of how the
client/server implementation is done is up to the implementer of the con-
crete AbsRCPDatabase subclass.

The complete interface for AbsRCPDatabase follows.

class RCPName;
typedef std::list<RCPValue> RCPValueCollection;
class AbsRCPDatabase {
public:
AbsRCPDatabase(const std::string& version = std::string());
virtual ~AbsRCPDatabase() = 0;

//
// Testing
//
// Return true if the db contains an entry with this ID.
virtual bool has(const edm::RCPID& id) const = 0;
// Return the number of db entries matching this name. Note
// that the name may be incomplete; this is why more than
// one match is possible.
virtual size_t count(const RCPName& name) const = 0;
// Return the number of db entries matching this hash key.
virtual size_t count(const RCPHashKey& name) const = 0;
// Return true if this db may be written to.
virtual bool isWritable() const = 0;

//
// Manipulation and access.
//
// Return the name of this db
virtual DBName dbName() const = 0;
// Return the class name of this database

4



virtual std::string className() const = 0;
// Fill the given RCPValue with the parameter set
// specified by the given RCPID, insert the appropriate
// RCPID and RCPName, and return true. If no match is found,
// return false and do not modify val.
virtual bool get(const edm::RCPID& id,

RCPValue& val) const = 0;
// Fill the collection with RCPValues that match the given
// hash key, and return true. If no matching RCPValues are
// found, return false and do not modify the collection
// values.
virtual bool get(const RCPHashKey& key,

RCPValueCollection& values) const = 0;
// Fill the collection with RCPValues that match the given
// (possibly incomplete) RCPName. If no matching RCPValues
// are found, return false and do not modify the collection
// values.
virtual bool get(const RCPName& name,

RCPValueCollection& values) const = 0;

// Add a parameter set equal to the one within val to the db.
// Modify val to have a valid RCPID (issued by the db, to
// assure uniqueness) and to have a complete RCPName, and
// return true. The RCPName may have to be completed by the
// db, by inserting the database name, again to assure
// uniqueness. If the new parameter set cannot be added to
// the database, or if a new unique RCPID cannot be issued,
// or if the RCPName cannot be completed uniquely, return
// false and do not modify val.
virtual bool put(RCPValue& val) = 0;

5



// Try to add the given name to an already existing parameter
// set. Return false on error, true on success. Successful
// completion of this function means that the database has
// completed the name (if necessary), and given it a
// timestamp, and inserted it into the RCPValue. The database
// has also updated itself so that it will recognize this
// name as associated with this RCPValue.
// Preconditions: it is guaranteed that the RCPValue will
// have a valid RCPID, and that this RCPID will be known to
// the database.
virtual bool addName(RCPValue& val, const RCPName& name) = 0;
// Try to add the given name to an already existing parameter
// set. Return false on error, true on success. Successful
// completion of this function means that the database has
// completed the name (if necessary), and given it a
// timestamp, and inserted it into the RCPValue. The database
// has also updated itself so that it will recognize this
// name as associated with this RCPValue.
bool tryToAddName(RCPValue& val, const RCPName& name);
// Remove the given name from this database. If any
// parameter set is associated with no other name, remove the
// parameter set as well. Note that this is a destructive
// operation, and should never be done after a database has
// been in use; this function is to be use, with care, only
// by database managers.
// Return codes:\
// -2: removal failed; unable to remove parameter set
// -1: removal failed; nothing by this name was found
// 0: removed name
// 1: removed name, and also removed parameter set
virtual int remove(const std::string& pkgName,

const std::string& objName,
const std::string& version) = 0;

//
// Output
//
// Print output useful for debugging to stream os.
virtual void dump(std::ostream& os) const = 0;

6



// Return a new version tag. This will give either the fixed
// version this database has been told to produce, or a
// unique timestamp.
std::string generateVersion() const;
// Return true if this database is to produce a fixed
// version tag, and false if it is to produce timestamps.
bool hasFixedVersionTag() const;

};

6 Uniqueness of RCPNames and RCPIDs

The class RCPName exists in order to provide a human-friendly method of
referring to a particular parameter set. The class RCPID exists in order to
provide a concise and unique method of referring to a particular parameter set.
The mapping from RCPID to parameter set is one-to-one: each parameter set
has exactly one RCPID, and each RCPID refers to one parameter set. The
mapping of RCPName to parameter set is many-to-one: each parameter set
can have many names (it must have at least one), but each RCPName must
refer to a single parameter set. An RCPName object has several components,
each of which is a string: a package name, and object name, a version, and a
database name. For parameter sets which are entered into the database through
the release mechanism, the version means the version name of the experiment’s
software release. For parameter sets entered by any other mechanism (such as
as a the planned web interface), the assignment of the version name will be done
by the database. The database name is the name associated with the database
piece in which the parameter set resides.

7 Untracked Parameters

Untracked parameters are never stored in a database. A parameter set presented
for completion to the database may contain untracked parameters (e.g. if the
parameter set was formed by reading a script), but they are not to be stored.
The equality test function (operator==) for two RCPValue does not consider
untracked parameters in its comparison. If a parameter set containing untracked
parameters is presented to a database for completion, the untracked parameters
must remain untouched by the database upon return of the completed RCPVal-
ue.

7


	Recent Modifications 
	Introduction and Terminology
	Glossary

	RCP Classes Relevant to the Databases
	C++ Representation of Database Pieces
	Responsibilities of RCPDatabaseServices and AbsRCPDatabase
	Uniqueness of RCPNames and RCPIDs
	Untracked Parameters

